OD-based growth model

Introduction

Scattering of light by a replicating population over time, and hence the changing OD is a measure to model the growth of a fungal species over time. This experiments aims to determine the growth rate and lag time of fungal species identified in our surroundings.

Materials

- > Fungal samples cultures on slant PDA(Potato dextrose agar)
- > Potato dextrose broth(PDB)
- > Test tubes
- > Phosphate buffered saline(PBS)
- > Tween 20
- > 10mL Falcon tubes
- > Vortex machine
- > Hemocytometer
- > 96-well plate
- Plate reader

Procedure

Preparation of spore suspension

- 1. Keep the necessary items in the biosafety cabinet and switch on the UV light for sterilization.
- 2. Switch off the UV light after 15 mins and wipe off the work area with 70% ethanol.
- 3. Add 5 mL of PBS to the slant test tube, swirl, and pour the PBS into a falcon tube.
- 4. Add 0.1% (of total volume of PBS added, 5μ L, here) Tween 20 to the tube.
- 5. Vortex suspension for 15 seconds at 2000 rpm for uniform mixing of spores in the PBS.

Counting of spores using a hemocytometer

- 6. Clean the hemocytometer with 70% ethanol and kim wipes and place its coverslip covering both the chambers.
- 7. Load the spore suspension in the two chamber.

- 8. Place the hemocytometer under microscope and view it under 10X and 20X to clearly visualise the spores.
- 9. Select the box to be considered according to the size of the spores and count them.
- 10. Calculate the number of spores in the entire 5ml of spore suspension.

Setting up the 96-well plate

- 11. To keep the number of spores constant in all the wells, dilute the spore suspension using PBS.
- 12. Prepare dilutions to make suspension of 4*10^4 spores/mL.
- 13. 3 wells(triplicate) are to be used for each fungal species in a 96-well plate. Fill the wells with 100µL of PDB.
- 14. Add 100μ L of spore suspension to make the final count of spores in the well as 2*10^4 spores/mL.

Well1												
	1	2	3	4	5	6	7	8	9	10	11	12
А	1A		2A		ЗA		Blank					
В	1A		2A		ЗA		Blank					
С	1A		2A		ЗA		Blank					
D												
Е												
F	1B		2B		3B		Blank					
G	1B		2B		3B		Blank					
Н	1B		2B		3B		Blank					

 $\mathbf{\wedge}$

15. For blank, add 100µL of PDB and 100uL of PBS.

Note: For our experiment , we used 3 fungal species and made 2 separate slant PDA cultures(A and B) for them

- 1: Aspergillus niger(1A and 1B)
- 2: Aspergillus versicolor(2A and 2B)
- 3: Rhizopus oryzae(3A and 3B)
- 16. Keep the plate in a shaker cum incubateor at 28°C.
- 17. Take the OD measurements at 605nm in a plate reader for a fixed interval of time.. (For our purpose, we took 4 times a day at an interval of 6 hr for 4-5 days.)
- 18. Record the reading.

IC50 of an Antifungal

Introduction

IC₅₀ of an antifungal here would indicate how much of the chemical would be needed to inhibit, in vitro, the given fungal species. (https://en.wikipedia.org/wiki/IC50) Lower the IC50, better the efficiency of the antifungal.

Materials

- > Fungal samples cultures on slant PDA(Potato dextrose agar)
- > Potato dextrose broth(PDB)
- Test tubes
- > Phosphate buffered saline(PBS)
- > Tween 20
- > 10mL Falcon tubes
- > Nipagin (antifungal)
- > 100% ethanol
- Vortex machine
- Hemocytometer
- > 96-well plate
- > Plate reader
 - >

Procedure

Preparation of spore suspension

- 1. Keep the necessary items in the biosafety cabinet and switch on the UV light for sterilization.
- 2. Switch off the UV light after 15 mins and wipe off the work area with 70% ethanol.
- 3. Add 5 mL of PBS to the slant test tube, swirl, and pour the PBS into a falcon tube.
- 4. Add 0.1% (of total volume of PBS added, $5\mu L,$ here) Tween 20 to the tube.
- 5. Vortex suspension for 15 seconds at 2000 rpm for uniform mixing of spores in the PBS.

Counting of spores using a hemocytometer

- 6. Clean the hemocytometer with 70% ethanol and kim wipes and place its coverslip covering both the chambers.
- 7. Load the spore suspension in the two chamber.
- 8. Place the hemocytometer under microscope and view it under 10X and 20X to clearly visualise the spores.
- 9. Select the box to be considered according to the size of the spores and count them.
- 10. Calculate the number of spores in the entire 5ml of spore suspension.

Use of antifungal-Niapagin

- 11. To make 0.1g/mL concentration of Nipagin, add 0.1 g of Nipagin to 100% ethanol.
- 12. Dilutions can be made according to the need using 100% ethanol.

Setting up the 96-well plate

- 13. To keep the number of spores constant in all the wells, dilute the spore suspension using PBS.
- 14. Prepare dilutions to make suspension of 4*10^4 spores/mL and 8*10^4spores/mL.
- 15. 3 wells(triplicate) are to be used for each concentration of Nipagin in a 96-well plate. Fill the wells with 100μ L of PDB.
- 16. Add 50μL of spore suspension from spore concentration of 8*10^4spores/mL to make the final count of spores in the well as 2*10^4 spores/mL.
- 17. Add 50μ L of Nipagin to the triplicates.
- 18. For blank, add 100 μL of PDB and 100uL of PBS.

Well1	Well1											
	1	2	3	4	5	6	7	8	9	10	11	12
A B C	Conc. 1	Conc. 2	Conc. 3	Conc. 4	Conc. 5	Conc. 6	Conc. 7	Conc. 8	Conc. 9	Conc. 10	Conc. 11	Conc. 12
D	D Fungal spores with ethanol				Blank		Fungal spores with ethanol				Blank	
Е	E Only fungal spores				DIdHK		Only fungal spores					
F G	Conc. 1	Conc. 2	Conc. 3	Conc. 4	Conc. 5	Conc. 6	Conc. 7	Conc.	Conc.	Conc. 10	Conc.	Conc. 12
H		00110.2	001101 0	00110. 4	00110.0	conc. o	conc. 7	8	9	cone. To	11	Conc. 12

Row A, B, C: 100µL PDB+50µL spore suspension of 8*10^4 spores/mL (*Aspergillus versicolor*)+ 50µL Nipagin(Conc in µg/mL)

 $\mathbf{\wedge}$

Row E, F, G: 100µL PDB+50µLspore suspension of 8*10^4 spores/mL (*Rhizopus oryzae*)+ 50µL Nipagin(Conc in µg/mL)

D1, D2, D3: 100µL PDB+50µL spore suspension of 8*10^4 spores/mL (*Aspergillus versicolor*)+ 50µL 100% ethanol

D7, D8, D9: 100µL PDB+50µL spore suspension of 8*10^4 spores/mL (*Rhizopus oryzae*)+ 50µL 100% ethanol

E1, E2, E3: 100µL PDB+ 100µL spore suspension of 4*10^4 spores/mL (Aspergillus versicolor)

E7, E8, E9: 100µL PDB+ 100µL spore suspension of 4*10^4 spores/mL (*Rhizopus oryzae*)

- 19. Keep the plate in a shaker cum incubateor at 28° C.
- 20. Take the OD measurements at 605nm in a plate reader for a fixed interval of time.. (For our purpose, we took 4 times a day at an interval of 6 hr for 4-5 days.)
- 21. Record the reading.